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Abstract 

 

 

 
Bach, Bernardo Luiz; Barbosa Raposo, Alberto (Advisor); Hurtado 

Jauregui, Jan Jose (Co-Advisor). Automated analysis of rat 
behavior using deep learning and spatio-temporal visuali- 
zation. Rio de Janeiro, 2024. 35p. Final Project – Departamento 

de Informática, Pontifícia Universidade Católica do Rio de Janeiro. 

 

 

This project presents a multi-stage computational framework to stream- 

line the analysis of rat behavior in conditioning experiments, a common pro- 

cedure in neuroscience and behavioral research. Traditional manual analysis of 

video-recorded sessions, which document rats’ responses to conditioned stimuli, 

is labor-intensive and prone to error. Our approach leverages deep learning to 

automate this process, enhancing both efficiency and accuracy in behavioral 

assessments. In the first stage, we use deep learning-based methods to seg- 

ment key rat body parts and detect the rearing posture across video frames. 

To train these models, we developed a novel semantic segmentation dataset, 

enabling the use of CNN-based architectures with supervised learning. Next, 

our method extracts spatio-temporal descriptors from the segmented frames, 

allowing for precise quantification of behavior over time. In the final stage, we 

generate visual representations of these descriptors, creating a comprehensive 

view of behavior patterns such as freezing, rearing, and grooming. This method 

not only reduces the manual workload but also provides a robust, data-driven 

approach to understanding complex behavioral responses in animal models, 

opening avenues for more consistent, large-scale behavioral research. 
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Resumo 

 

 
Bach, Bernardo Luiz; Barbosa Raposo, Alberto; Hurtado Jauregui, 

Jan Jose. Análise automatizada do comportamento de 
ratos utilizando aprendizagem profunda e visualização 
espácio-temporal. Rio de Janeiro, 2024. 35p. Projeto Final – 

Departamento de Informática, Pontifícia Universidade Católica do 

Rio de Janeiro. 

 

 

Este trabalho apresenta um método computacional baseado em múltiplas 

etapas para simplificar a análise do comportamento de ratos em experimentos 

de condicionamento, um procedimento comum em pesquisas de neurociência e 

comportamento. A análise manual tradicional de sessões de vídeo, que docu- 

mentam as respostas dos ratos a estímulos condicionados, é trabalhosa e su- 

jeita a erros. Nossa abordagem utiliza aprendizado profundo para automatizar 

esse processo, aumentando tanto a eficiência quanto a precisão nas avaliações 

comportamentais. Na primeira etapa, utilizamos métodos baseados em apren- 

dizado profundo para segmentar partes-chave do corpo dos ratos e detectar a 

postura de rearing ao longo dos quadros de vídeo. Para treinar esses modelos, 

desenvolvemos um novo conjunto de dados de segmentação semântica, permi- 

tindo o uso de arquiteturas baseadas em redes neurais convolucionais (CNN) 

com aprendizado supervisionado. Em seguida, nosso método extrai descritores 

espaço-temporais dos quadros segmentados, permitindo a quantificação precisa 

do comportamento ao longo do tempo. Na etapa final, geramos representações 

visuais desses descritores, criando uma visão abrangente de padrões compor- 

tamentais como freezing, rearing e grooming. Este método não apenas reduz o 

esforço manual, mas também oferece uma abordagem robusta, orientada por 

dados, para compreender respostas comportamentais complexas em modelos 

animais, abrindo caminho para pesquisas comportamentais mais consistentes 

e em larga escala. 
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1 

Introduction 

 

 

 

 
Behavior analysis of rats is an experimental procedure widely used in 

neuroscience, psychology, pharmacology, and genetics that serves as a vital tool 

for biomedical research [1]. Rats are used for these experiments because their 

genetics are similar to human genetics, and they do not produce expensive 

costs in experimentation. Different experiments are considered to analyze 

drugs, diseases, biological mechanisms, genetics, psychological conditions, or 

any external factor that can affect the entity’s behavior. 

One of these experiments involves placing a rat inside a conditioning 

chamber on two different occasions. The animals reside in their home cages 

and are brought into the chamber for the first session, during which they roam 

freely for 8 minutes. Afterward, they are subjected to 3 unavoidable shocks, 

each spaced 10 seconds apart, followed by an additional 3-minute period in 

the chamber. Finally, the rat is returned to its home cage. This initial session 

is intended to condition the animal to associate the new environment with 

danger. 

The second phase of the experiment takes place 24 hours later, where the 

rat is returned to the conditioning chamber for another 8 minutes but without 

exposure to any aversive stimuli. 

For some studies, the primary focus is on the animal’s behavior during 

this second session, as it reflects how well the rat learned from the previous 

exposure to the chamber and how effectively it associated the context with 

pain and fear. 

Some animals exhibit prolonged periods of immobility, which is referred 

to as “freezing behavior"—a recognized anxiety-related response [2]. Others 

engage in a higher frequency of actions such as grooming and rearing, which 

is often observed in animal models of TDHD and hyperactivity [2]. Multiple 

hypotheses can be derived from the study of these animal models. The effects 

of different substances can be tested to assess behavioral changes or damage to 

certain neuronal structures, which can be induced to determine the functions 

of those structures. These are examples of what can be tested using this type 

of procedure. 

All events in this experiment are recorded on video and manually 
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Figure 1.1: Sampled frames from two recorded videos. The first row represents 

a video generated using night vision. The second row represents a video 

generated using normal settings. 

 

analyzed by specialists to report rat behavior. Figure 1.1 illustrates some of 

these videos, where we can see the rat within the chamber. Although these 

videos represent important documentation for the experiment, their manual 

analysis requires significant effort and is prone to human error. In this context, 

automated tools can assist this analysis, making it faster while minimizing 

possible errors. 

In this project, we propose a multi-stage method that aims to support the 

rat behavior analysis in the specific experiment described above by providing 

visual information that is helpful for understanding and comparing different 

behaviors. The first stage of our method consists of segmenting rat body 

parts and identifying the rearing pose in all the video frames using deep- 

learning-based approaches. For these approaches, we create a novel semantic 

segmentation dataset that allows us to train encoder-decoder segmentation 

models considering supervised learning. The second stage processes these 

predictions to estimate spatio-temporal descriptors that are useful for defining 

rat movements. Finally, in the third stage, we compute visual representations 

to support the behavior assessment. 

The rest of the document is structured as follows. Chapter 2 presents 

some related work relevant to our method. Chapter 3 describes the proposed 

methods in full detail. Chapter 4 shows some experimental results. Chapter 5 

concludes this final project. 



2 

Related work 

 

 

 

 
The analysis of laboratory rat behavior has been conducted for many 

decades. Software tools were developed to assist researchers in generating data 

from animal observations [3], but these tools often demand extensive manual 

input, requiring researchers to spend long hours manually analyzing animal 

behavior. 

Since the late 20th century, various methods for automating this process 

have been developed using a broad range of computational vision tools that can 

facilitate animal behavior recognition, including techniques such as bounding 

boxes [4, 5], key point tracking [4, 6], thermal image segmentation [7], marker 

tracking [8] and in more recent years markerless tracking [6] 

While early attempts to address this challenge relied on hand-coded 

heuristics, recent years have seen the predominance of computational models 

leveraging machine learning and deep learning [4, 6, 5, 7]. One of the earliest 

studies to automate rat behavior analysis with the use of machine learning was 

published by Rousseau et al. more than 20 years ago, in which they proposed 

the use of image processing techniques alongside neural networks [9]. 

DeepLabCut [6] is a state-of-the-art open-source tool that performs 

markerless tracking and pose estimation through deep learning and transfer 

learning. Its accuracy is competitive with both proprietary and other open- 

source alternatives [10]. 

For this project, we adopted a different approach to rat behavior analysis 

by utilizing semantic segmentation with a U-Net-based model. This technique 

allows us to precisely identify and separate from the background the interesting 

elements in an image, such as the rat’s head, body, the initial part of the tail, 

and the platform on which the experiment took place. 

To the best of our knowledge, no publications have been found that 

employ semantic segmentation for rat behavior analysis. 



3 

Method 

 

 

 

 
We propose a multi-stage approach to assist in assessing rat behavior 

in neuroscience experiments. Specifically, we analyze video-recorded sessions 

where a single rat is placed in a controlled cage environment. The objective is 

to track the rat movement within the video and generate visual descriptors that 

facilitate behavioral interpretation. In the first stage, we focus on segmenting 

the rat body parts in each video frame. Additionally, since identifying whether 

the rat is in a rearing pose (standing on hind legs) is critical for behavioral 

analysis, we classify each frame to determine if the rat is in this posture. Both 

tasks are addressed using deep learning-based methods. In the second stage, we 

extract spatio-temporal descriptors from the video and the predictions of the 

models to capture key aspects of the rat movement. Finally, in the third stage, 

we produce visual summaries to support the analysis of behavioral patterns. 

The following sections provide a detailed description of each stage and the 

datasets used for our experiments. 

 

3.1 

Raw dataset 

The dataset used in this study originates from INCog, a multidisciplinary 

neuroscience research group at PUC-Rio, specifically from the Behavioral 

Neuroscience Laboratory (LANEC), where they study animal behavior using 

rats. 

All videos were recorded within a closed box, blocking all external light. 

Inside this box lies a conditioning chamber measuring 25 cm x 20 cm x 20 cm, 

with walls made of transparent material and a floor composed of multiple steel 

rods spaced 1.5 cm apart, illuminated only by a red light. The rats are all white 

and of similar size. The camera is placed adjacent to the conditioning chamber 

and mounted on the wall of the outer box. The camera angle is inconsistent 

throughout the videos due to the setup construction. As a result, sometimes, 

the camera is unable to capture the entire chamber. 

During the procedure, one rat is placed inside the chamber, and for 15 

minutes, it can freely move, and its behavior is recorded. 

The dataset contains 81 videos with durations ranging from 5 minutes 
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to 3 hours. From these videos, we selected 24 to train data-driven models and 

the other 57 to test our algorithms. 

 

3.2 

Supervised learning datasets construction 

In the first stage of our method, we aim to segment and classify the 

frames of the video using deep learning models to describe the rat body and 

if it is in a rearing pose. Appropriate datasets are essential to enable the 

training of these models under a supervised learning strategy for the target 

tasks. For constructing a semantic segmentation dataset, we first define the key 

structures of interest, specifically certain body parts of the rat that facilitate 

tracking its motion and orientation while simplifying the annotation process. 

These structures include the head, trunk, and base of the tail. Additionally, 

to track the rat location within the cage, we include the cage platform as a 

structure of interest. For the definition of a possible rearing pose, we consider 

a binary classification problem, where we need samples where the rat presents 

this position and samples where it does not. 

 

3.2.1 

Frame selection 

We select a set of representative frames from the training videos, ensuring 

variety in the rat locations and poses. For this, we use a custom interactive 

tool that allows us to navigate through the video and export frames of 

interest in image format. This selection process also aims to achieve a balanced 

representation of frames with and without the rearing pose. 

 

3.2.2 

Annotation tool 

We developed a sketch-based contour drawing annotation tool for delin- 

eating structures of interest on the selected frames. This tool enables users to 

draw and edit closed contours for specific structures with intuitive deformation 

interactions. Additionally, users can adjust standard window/level parameters 

for clearer visualization and use zoom and translation functions to focus on 

the target structure. The contours are saved as dense, high-resolution polygons 

within the image space. This tool also allows the user to label the selected 

frames, enabling the definition of whether the rat is in a rearing pose. A cap- 

ture of this tool is shown in Figure 3.1, where we can see a selected frame and 

its corresponding annotations. 
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Figure 3.1: Annotation Tool. 

 

3.2.3 

Dataset export and split 

Using the polygon annotations, we create multi-class label maps that 

assign a single structure of interest for each pixel. For this generation, we 

rasterize the annotated polygons into a single map considering the following 

operations: (1) fill the full label map with the background class label. (2) 

rasterize the platform structure polygon on the previous label map. (3) 

rasterize the trunk structure polygon on the previous label map. (4) rasterize 

the head structure polygon on the previous label map. (5) rasterize the tail init 

structure polygon on the previous label map. Then, these label maps can be 

converted to the probability maps expected as the outputs of the segmentation 

deep learning model by using one-hot encoding. An example of this label map 

is shown in Figure 3.2. 

For the rearing pose labels, we create a one-hot encoding vector to 

indicate the presence or absence of the rearing pose. This vector assigns a 

value of 1 if the rat is in the rearing pose and 0 if it is not. 

The samples are randomly split into training and validation sets, repre- 

senting 70% and 30% of the full samples, respectively. The validation set is 

used to guide the training process and prevent overfitting. The same split is 

used for both problems, semantic segmentation and classification. 
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Figure 3.2: Dataset sample. Top: image. Bottom: label map. The platform 

structure is colored in yellow, the trunk structure is colored in blue, the head 

structure is colored in green, and the tail init structure is colored in magenta. 

 

3.2.4 

Annotation process 

The complete annotation process was conducted by two annotators, fol- 

lowing some rounds of experimental trials to refine and align the annotation 

methodology. A total of 728 frames were selected for annotation from 24 differ- 

ent videos. All frames were fully annotated using the custom annotation tool, 

and the corresponding segmentation and classification labels were exported as 

described. After splitting the data, we obtained 510 samples for the training 

set and 218 samples for the validation set. The training and validation sets 

contain 40% and 37% of frames with the rearing pose, respectively, ensuring a 

balanced representation of this behavior. 

 

3.3 

Stage 1: Deep learning-based analysis 

In this stage, we propose using two deep learning models to analyze the 

video frames in a data-driven manner, leveraging their ability to automatically 

learn complex features and patterns relevant to our tasks. This approach 
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enhances both the accuracy and robustness of the frame analysis. 

 

3.3.1 

Semantic segmentation of rat’s body parts 

We aim to segment the body parts of the rat within the full video frames 

by using a deep learning model that follows a supervised learning scheme. 

We decided to use a semantic segmentation strategy because the experiment 

presents a repetitive environment with the presence or absence of a single com- 

mon entity. We consider a U-Net [11] architecture with an InceptionResNetv2 

[12] model as a feature extractor (backbone) for the segmentation task. The 

network input is a 3-channel image with dimensions 384 × 384 and intensity 

values ranging from −1 to 1. The network outputs a 384 × 384 × C per-pixel 

probability map, where C represents the number of classes, including an im- 

plicit background class for unannotated pixels. Since the segmentation task 

is approached as a multi-class per-pixel classification problem, the final layer 

employs a softmax activation function. For training, a hybrid loss function 

combining Categorical Focal Loss and Jaccard Loss is used. The training con- 

figuration includes a batch size of 4, a learning rate of 10−4, and a maximum of 

500 epochs, with early stopping applied using a patience of 50 epochs. During 

training, we use an aggressive data augmentation procedure that considers the 

following parameters. Rotation range: 90º, shift range: 25%, zoom range: 25%, 

random horizontal flip, brightness range: 50%, shear range: 5º, channel shift 

range: 150. 

Figure 3.3 shows segmentation prediction examples on multiple frames 

of a test video. Notice that in most cases, the segmentation of the body 

parts seems to be accurate and consistent. The platform presents some noise; 

however, it is a static object, and our idea is to post-process the multiple 

segmentations to obtain a single representation. 

Let us denote the predicted probability maps for each structure of interest 

by Pplat, Phead, Ptrunk, and Ptail, where each one corresponds to the platform, 

head, trunk, and tail, respectively. By thresholding these predictions, we can 

obtain the binary masks Mplat, Mhead, Mtrunk, and Mtail, representing the 

platform, head, trunk, and tail, respectively. 

 

3.3.2 

Rearing pose classification 

In addition to the segmentation of rat’s body parts, we also use a deep 

learning model under a supervised learning strategy for the rearing pose 

classification. To avoid the inclusion of the full frame information, we focus 
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Figure 3.3: Structures of interest and rearing pose classification predictions on 

different frames of a test video. 

on a region of interest defined by the segmentation of the trunk and head of 

the rat for this task. More precisely, during training, we use the rat’s trunk and 

head segmentation label maps to define a dilated bounding box that captures a 

region around these structures. The dilation of the bounding box is controlled 

by a random offset between 0.05h and 0.25h pixel units, where h is the height of 

the frame. During inference, we use a bounding box based on the segmentation 

model predictions Phead and Ptrunk with a fixed offset equal to 0.15h. 

We consider a EfficientNet-B0 [13] as the model for the rearing pose 

classification task with a single neuron in the final layer combined with a 

sigmoid activation function. The output for each sample is a single probability 

value defining if it presents a rearing pose or if it does not. The model input is 

a 3-channel image with dimensions 128 × 128 and intensity values ranging from 

−1 to 1. For training, we use a binary cross entropy loss function, batch size of 

32, a learning rate of 10−4, and a maximum of 500 epochs, with early stopping 

applied using a patience of 50 epochs. In this case, we use less aggressive data 

augmentation that includes a rotation range of 5º, a shift range of 5%, a zoom 

range of 10%, a random horizontal flip, a brightness range of 50%, a shear range 

of 5º, and a channel shift range of 150. Let us denote the predicted probability 

value as a rearing pose score srear. Figure 3.3 shows in red the rearing pose 

scores predicted over some frames of a test video. 
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3.3.3 

Prediction on video 

The two models are applied to the target video frames, considering a 

downsampling ratio to make the full video processing faster. More precisely, we 

uniformly sample a frame every 0.5 seconds, reducing the number of processed 

frames considerably. Thus, for the next stages, assume that we have the 

corresponding predictions for the uniformly sampled frames and consider a 

new frame rate for every computation. All the estimations presented in the 

next sections can be linearly interpolated to match the original resolution. 

 

3.4 

Stage 2: Spatio-temporal descriptors 

In this stage, we compute descriptors that describe the video in the spatial 

and temporal domains. All these computations are performed considering time- 

based video downsampling and the resized frames for the segmentation model, 

i.e. 384 × 384 images. 

 

3.4.1 

Platform estimation 

First, we estimate a quadrilateral shape to approximate the cage platform 

region. For this computation, we uniformly sample k frames from the full video 

and apply the structures of interest segmentation model over them, obtaining 

a set of platform binary masks M(i) , where i ∈ {1, ..., k}. Then, we compute 

an average platform segmentation Mµ across the time as follows: 

Mµ = 

A 
1 Σk 

chull 
1

M(i) 
2
B 

0 5 

 

(3-1) 

 

where the function chull(M) computes the Convex Hull binary image for an 

input binary image M. The summation is a numerical operation, treating 

true values as one and false values as 0 rather than a logical operation. This 

averaging process is based on identifying persistent regions classified as the 

platform while minimizing interference from other structures and assuming 

convexity priors for the platform’s shape, as expected in the given environment. 

Figure 3.4 shows in red an example of a platform mask Mµ estimated for 

the full video. 

We estimate the contours of the mask Mµ  , represented as polygons, and 

select the largest one as the representation for the platform boundaries. Then, 

we use the Douglas–Peucker algorithm to fit a quadrilateral to this contour, 

generating a new polygon with four vertices, which represent the four corners 

i=1 

, 
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Figure 3.4: Estimation of the platform reference points. The red transparent 

shapes is Mµ  , and the colored points are the estimated corner points. 

 

of the platform. Based on their position in the video, the corners are sorted 

to achieve a standard representation that allows us to match them with the 

corners of the real platform square. 

Let us denote the sorted corners found on the video as p1, p2, p3, and p4. 
We match them with the set of sorted points pπ , pπ , pπ , and pπ that represent 

1 2 3 4 

the corners of the platform in the real space, following a 2D representation. 

With these correspondences, we find a homography matrix H using the least 

squares method. This matrix allows us to project any point from the video 

space to the real 2D space, enabling measurements on a real scale. More 
precisely, the corners pπ , pπ , pπ , and pπ define a square with sides length 

1 2 3 4 

equal to 20 mm, which are the real measurements of the platform. 

 

3.4.2 

Positions projection 

The segmented masks Mhead, Mtrunk, and Mtail on all the frames are 

spatial descriptors of the rat occupancy in the video space. Similarly to object 

detection approaches, these shapes enable us to approximate the position of 

the rat through time. We compute an approximated position for the three 

rat body parts by processing and picking the centroid of the corresponding 

mask. For the frame and structure mask, we select the centroid of the largest 
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connected component if this component presents a considerable area (50 pixel 

units in the video space). Otherwise, we left the position for the corresponding 

structure mask empty. At the end of the full positions computation, i.e. over 

all the frames of the video, we interpolate the values of those that are empty. 

Additionally, we apply three iterations of a smoothing Gaussian filter with 

σ = 2 to the estimated positions on the temporal domain. These operations 

allow us to obtain smooth transitions and minimize the presence of outliers in 

the full estimated positions. 

Let us denote any of the estimated positions for each frame and for each 

structure as the point x, which is defined in the video space. To obtain its 

projection xπ in the real space defined by the platform quadrilateral, we apply 

the following: 

xπ = cc (H(hc(x))) , (3-2) 

where the function hc(x) converts x to homogeneous coordinates and the 

function cc(x′) converts x′ from homogeneous coordinates back to Cartesian 

coordinates. Thus, with this processing, we obtain the reference positions xπ 

for each rat body part and for each video time step in the real space. These 

coordinates can be used to compute direction vectors that describe where 

the rat is looking. For a given position xπ for the trunk and a given 

position xπ for the head, we can estimate the unit direction vector equal 
π 
head 

 

3.4.3 

π 
trunk 

π 
head trunk|. 

Descriptors 

Using the projected positions, segmentation predictions, rearing pose 

classification predictions, and the video content, we create some descriptors 

useful to assist the analysis of the rat behavior. It is possible that the rat is not 

present in all the frames in some videos. For this reason, we create a presence 

descriptor dpres with scalar values in the range [0, 1], where 0 indicates the rat 

absence and 1 indicates its presence. For each frame, the descriptor value dpres 

is defined as follows: 

dpres = 
1, if area(Mhead ∨ Mtrunk) > 10 

, (3-3) 
0, if otherwise 

where the function area measures the area of a given mask in pixel units. 

We use the positions of the trunk projected in the real space to define 

a spatial descriptor that represents the positions of the rat through time. Let 

us define this descriptor as Dpos, which is useful to map the different positions 

where the rat was in the video. By measuring the displacement of the rat over 

to (x − x )/|x − x 
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time, we can compute a speed descriptor that maps the locomotion of the 

rat within the cage. It is useful to identify the regions of the video where the 

rat presented fast displacements. Let us denote this descriptor as dloc, which 

maps the rat speed in mm/s multiplied by the values of dpres. The latter is to 

define that there is no locomotion in frames where the rat is not present. By 

thresholding this descriptor, we obtain a piece-wise constant descriptor dlocth 

with values in the range [0, 1] that represent the regions of the video where the 

rat presented considerable motion. We use a threshold value of 5mm/s. 

The locomotion of the rat within the cage is important for analyzing its 

behavior; however, the rat also exhibits various localized movements during ac- 

tivities such as rearing, grooming, and other fine motor actions. These smaller, 

specific movements provide additional insights into behavioral patterns, stress 

responses, and general health, complementing the broader analysis of its lo- 

comotion. For this reason, we also create a descriptor of local motion based 

on image differences between neighboring frames in the video. The intuition 

is that these image differences are potential indicators of object motion in the 

video when the camera is static. Thus, let us denote as Ii the current frame 

and as Ii−1 the previous neighboring frame, considering a time distance of ap- 

proximately 1s. Also, consider two reference masks Mi and Mi−1, which are 

the union of the corresponding rat’s head and trunk masks. For both frames, 

we define a unique region of interest Mroi that is the dilation of the union of 

the reference masks of both frames, i.e. Mroi = dilation (Mi ∪ Mi−1). Then, 

we compute a difference image Idiff focused on this region as follows: 

Idiff = |Ii − Ii−1| ⊙ Mroi, (3-4) 

where Mroi represents the element-wise multiplication. From this difference 

image Idiff, we select the areas that represent considerable motion by applying 

a threshold of 5. The latter results in a new local motion mask Mlm that 

is post-processed using binary opening, binary closing, and small connected 

component removal. Finally, considering the local motion mask Mlm, we define 

a local motion score dlm as follows: 

dlm = min(area(Mlm)/150, 1). (3-5) 

By computing these values for every frame of the video, we generate the local 

motion descriptor dlm. 

Freezing is one of the key actions in rat behavior analysis, as it often 

indicates fear, anxiety, or heightened attention in response to a stimulus. Rec- 

ognizing freezing behavior can provide insights into the animal’s emotional 

state, response to environmental changes, or reaction to experimental condi- 
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tions. By accurately identifying and quantifying freezing episodes, researchers 

can assess the impact of pharmacological treatments, environmental stressors, 

or neurological disorders on the rat’s behavior, aiding in studies of anxiety and 

other behavioral or cognitive conditions [2]. To recognize the freezing action, 

we propose the binary descriptor dfreez, which presents values of 1 in regions 

of the video where the rat presents the freezing action and 0 otherwise. This 

descriptor is computed as follows: 

dfreez = sccr((1 − dlm) ⊙ (1 − dlocth) ⊙ dpres), (3-6) 

where the function sccr is a small connected component removal operation 

applied in 1D, used to avoid considering possible freezing regions with short 

times, i.e. lower than 4s. The intuition of this descriptor is to select those 

regions where the rat is present; it does not present locomotion in the cage 

and presents minimal local motion. 

Rearing is also a key action in rat behavior analysis, as it reflects 

exploratory behavior and curiosity, often indicating the rat’s interest in its 

environment or response to novelty. Rearing, where the rat stands on its 

hind legs, can provide insights into cognitive function, sensory perception, 

and general activity levels. Tracking rearing behavior helps researchers assess 

spatial awareness, investigate neurological health, and understand reactions to 

environmental stimuli, making it an important measure in studies on learning, 

memory, and anxiety. In the first stage, we compute rearing pose scores for 

each frame, denoted as srear. Let us denote the set of full scores as the vector 

srear. Then, the rearing action descriptor drear is defined as follows. 

drear = smooth(srear) ⊙ dpres ⊙ (1 − dfreez), (3-7) 

where the function smooth applies two iterations of a Gaussian filter with 

σ = 2. The intuition is to ignore those classification scores defined in regions 

where the rat is not present or is presenting a freezing action. 

Grooming is another key action in rat behavior analysis, as it serves as 

an indicator of the rat’s physiological and emotional state. Grooming behavior 

can reflect baseline self-maintenance activities, responses to stress, or reactions 

to environmental changes. By observing patterns, frequency, and duration of 

grooming episodes, researchers gain insights into the animal’s stress levels, 

coping mechanisms, and even neural function. Analyzing grooming behavior 

can thus be crucial for studies on anxiety, depression, neurological disorders, 

and the effectiveness of therapeutic interventions [2]. Although this action can 

be difficult to identify in a computational setting, we propose a grooming 

descriptor dgroo that indicates regions of the video where we can find high- 
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frequency local motion similar to that produced in a grooming action. Thus, 

we compute this descriptor dgroo as follows: 

dgroo = dlm ⊙ (1 − dlocth) ⊙ (1 − dfreez)⊙ 

(drear < 0.5) ⊙ dpres, 

 
(3-8) 

where the intuition is to select those regions of the video where the rat is 

present, it is not presenting a rearing action, it is not presenting a freezing 

action, it is not presenting locomotion within the cage, but it is presenting 

considerable local motion. 

 

3.5 

Stage 3: Visual analysis 

In this stage, we aim to generate visual representations that are useful 

for assisting the rat behavior analysis. As a first representation, we propose a 

trajectory map that shows the rat positions through the video in a normalized 

space with real scale. Thus, we can plot the coordinates of the descriptor Dpos 

as vertices of a continuous polyline within the target space. Figure 3.5 shows 

an example of this polyline that represents the trajectory of the rat through 

the video. Also, using the descriptor Dpos, we can generate a heatmap that 

highlights the regions of the cage where the rat spent the most time. For 

this, we map the time spent for each coordinate of Dpos onto a regular grid, 

then apply smoothing to create a more continuous representation of the rat’s 

movement patterns. Figure 3.5 shows an example of this heatmap, revealing 

a high-density region near the bottom-left corner of the cage, indicating that 

the rat spent a significant amount of time in this area. 

The descriptors dloc, dlocth, dfreez, drear, and dgroo, are especially useful to 

recognize actions and patterns in the full video. These descriptors can reduce 

the effort by making the user focus on specific regions of the video instead 

of analyzing it frame by frame. Thus, to produce a visual representation for 

these descriptors, we consider a horizontal color bar plot. Each sample in the 

horizontal direction represents a frame of the video, while the color maps the 

corresponding descriptor value. For the bar coloring, we consider a blue-white- 

red color map that uses the corresponding descriptor maximum and minimum 

values for normalization. Figure 3.6 shows an example of this plot for the 

different descriptors. Notice how the red regions in the plot are potential 

indicators of any of the behaviors of interest. 

All of these tools can significantly reduce the effort required by the user 

in analyzing multiple videos, streamlining the process of behavior assessment, 

automating time-consuming tasks, and allowing for more efficient data extrac- 
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Figure 3.5: Trajectory plot and heatmap example. 
 

 

 

Figure 3.6: Visualization of descriptors. 

tion and interpretation. 



 

4 

Results 

 

 

 

 

4.1 

Training log 

Using the parameters specified in the previous section for semantic 

segmentation, we trained the corresponding deep learning model, considering 

the validation set to select the best weights. Figure 4.1 shows the loss function 

evolution on training and validation sets, where it is possible to notice the 

corresponding convergence. Differently, for the rearing classification, Figure 

4.2 shows a more chaotic behavior on the validation set. Although we tried 

different parameters to make more stable the training procedure, we noticed 

that this could be caused by two factors: a small dataset and the complexity 

of differentiating a rearing pose from other poses. We hypothesize that with 

more annotated and highly representative data, we can achieve more stable 

and efficient training. 

 

4.2 

Numerical results 

Table 4.1 presents the numerical results obtained over the validation 

set in the rat’s body parts segmentation problem. We consider six metrics 

typically used for semantic segmentation tasks: precision, recall, accuracy, Dice 

coefficient, intersection over union (IoU), and Hausdorff distance in pixel units 

in the original video space. We show the metric values per-structure of interest 

and average. From this table, we can see that the tail init seems to be the most 

challenging structure. In contrast, the head and the trunk present high Dice 

and IoU values, suggesting that they will be useful for tracking. On the other 

hand, the platform segmentation seems to be accurate. 

For the rearing classification task, we evaluated performance using stan- 

dard binary classification metrics. Figure 4.3 presents the confusion matrix, 

where the dominance of true positives (TP) and true negatives (TN) over 

false positives (FP) and false negatives (FN) is apparent. Figure 4.4 displays 

the Receiver Operating Characteristic (ROC) curve, with an Area Under the 

Curve (AUC) of 0.98—indicating near-optimal classifier performance, as 1.0 
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Figure 4.1: Training log of semantic segmentation model. 

 

Table 4.1: Baseline approach IoU results 

Metric Head Trunk Tail init 
Plat- 

 
 
 
 

 
Mean 

 form  
Precision 0.7923 0.8978 0.5620 0.9648 0.8042 

Recall 0.7627 0.9179 0.6530 0.9551 0.8221 

Accuracy 0.9974 0.9957 0.9987 0.9805 0.9931 

Dice 0.7673 0.9059 0.5920 0.9594 0.8062 

IoU 0.7746 0.8984 0.6034 0.9227 0.7998 

Hausdorff 39.8167 42.4154 38.2144 102.4516 58.0611 

 

 
represents a perfect model. Additionally, the classification model achieved an 

accuracy of 0.94, precision of 0.91, recall of 0.93, and F1-score of 0.92, all 

of which suggest strong overall performance. Despite these promising results, 

there remains room for further improvement. 

 

4.3 

Visual results 

Figure 4.5 shows some rat’s body segmentation prediction results on 

selected samples of the validation set. We can see that the model closely 

approximates the ground truth annotations, confirming the numerical values 

presented above. Also, we can see that the model seems stable and does not 

present structures that are too noisy. However, in the last row sample, we can 

see that the model misses the prediction of the rat tail init. 
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Figure 4.2: Training log of classification model. 

 

4.4 

Implementation details 

 

4.4.1 

Programming language 

We chose to use the Python programming language due to its simplicity 

and vast machine learning libraries, allowing us to concentrate on the problem 

solving aspect of this complex theme. 

 

4.4.2 

Libraries 

For this image processing and segmentation tasks, we chose various 

Python libraries to optimize performance and usability. 

For machine learning and GPU acceleration, it integrates TensorFlow 

and Keras for model building and training, while ONNXRuntime ensures com- 

patibility with different machine learning frameworks and improves inference 

speed. We also used pre-trained architectures from the Segmentation Models 

library to support efficient segmentation workflows. 

Data manipulation and numerical operations are handled by Pandas and 

NumPy, with Matplotlib and Scikit-learn used for visualization and evaluation 

of model performance. 

The graphical user interface is built using PyQt and VTK, allowing users 

to interact with the software easily and visualize data. 
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Figure 4.3: Confusion matrix. 

 

We relied on OpenCV (cv2) and scikit-image to manage image processing 

and transformations. 

 

4.4.3 

Annotator 

For this project, an annotation tool was developed to facilitate the task of 

labeling images from the dataset. This tool enables users to draw and classify 

the contours of four regions of interest in the image: the rat’s head, trunk, the 

base of the tail, and the platform. Additionally, it was employed to classify 

images for rearing pose estimation. 

The annotator includes features that allow users to adjust lighting, 

contrast, and exposure, as well as zoom and pan across the image. These 

adjustments are not saved and are intended solely to aid in better visualizing 

the image during the annotation process. Each annotation is recorded as a set 

of coordinates within the image, forming dense, high-resolution polygons for 

each of the four previously mentioned structures. 

Annotations are saved in CSV format, with each row containing the 
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Figure 4.4: ROC Curve. 

 

following fields: 1) Instance ID: an identifier matching the image with a unique 

annotation; 2) Image ID: the original image file name; 3) Annotation ID: the 

label identifier for the annotated region; 4) Data: the coordinates of the drawn 

polygon; and 5) Time and Date. 

 

4.4.4 

Exporting the dataset 

The processing of the raw dataset occurs alongside that of the annota- 

tions. First, the raw dataset is randomly split into training (70%) and valida- 

tion (30%) groups. From the annotation data, the coordinates of each polygon 

are used to apply a rasterization algorithm, creating a multi-class map for each 

structure of interest present in the original image. Finally, the image is resized 

to 384 × 384, resulting in a labeled dataset for our segmentation model. 

 

4.4.5 

Training Script for Segmentation 

The training process begins by checking for the availability of GPUs. If no 

GPUs are available, the system defaults to using the CPU. A batch generation 

process follows, where both unprocessed and labeled images, resized during 
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Figure 4.5: Visual results on some samples of the validation set. First column: 

input image. Second column: ground truth annotation. Third column: predic- 

tion. 

a previous data manipulation phase, are retrieved to form the training and 

validation sets. Data augmentation occurs during this batch generation, where 

the training subset is subjected to rotations up to 90º, horizontal and vertical 

shifts, zoom, horizontal flipping, brightness variations, shear deformation, and 

channel shifting. 

For the training, we opted for a U-net architecture segmentation model 

combined with InceptionResNetV2 as a feature extractor. To achieve pixel-wise 

classification for multi-class segmentation tasks, a softmax activation function 

was selected. 

Although the U-net architecture is widely used in image segmentation 

problems, it has a significant limitation in its ability to learn more complex 

aspects of the model [14]. By incorporating the Adam optimizer, we aim to 

mitigate these limitations and further focus the deep learning model on the 

region of interest (ROI) in the images [15]. 

For model fitting, we implemented early stopping set to 50 epochs based 

on the validation loss. Model checkpoints were used to save weights during 

training, and logs of the loss value and Intersection over Union (IoU) scores 

were recorded. The training runs for a maximum of 500 epochs but may stop 
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earlier if early stopping is triggered. 

 

4.4.6 

Training Script for Binary Classification 

The training script begins similarly to the segmentation training, with 

a check for GPU availability. The dataset used consists of images and their 

corresponding classifications. The augmentations applied to the images are 

largely the same as in the previous task, with the exception that the rotation 

is limited to 5º. This is because the task involves classifying rearing behavior, 

where the rat stands up, making orientation a key variable. To further enhance 

the model’s focus on relevant features, a region of interest (ROI) extractor was 

implemented to create a bounding box around the rat, limiting the region 

processed in each training batch. 

The model used for this task is a convolutional neural network (CNN) 

with a sigmoid activation function. The backbone of the model is Efficient- 

NetB0, chosen for its lightweight architecture, as a more robust feature extrac- 

tor is unnecessary for this task. The loss function employed is binary cross- 

entropy, appropriate for measuring a binary classification output. Early stop- 

ping, model checkpointing, and logging mechanisms are the same as in the 

previous setup, with the training set to run for a maximum of 500 epochs. 

 

4.4.7 

Evaluation 

To evaluate the performance of the segmentation model, we compare the 

images labeled by the annotator with those labeled by the model. Six metrics 

are used to assess the model’s effectiveness: Intersection over Union (IoU), Dice 

coefficient, accuracy, precision, recall, and the Hausdorff distance. 

To calculate these metrics, we iterate through each pair of images, 

consisting of the original annotated image and the corresponding model- 

generated prediction. For each pair, we evaluate the performance for each class 

individually. 

Binary classification, on the other hand, requires a different evaluation 

approach and set of metrics. For this task, we compute accuracy, precision, 

recall, and the F1-score based on the labeled data and the predictions generated 

by the model. 
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4.4.8 

Demonstration GUI 

The demonstration GUI consists of an ethogram composed of five bars 

with heatmaps, two visualizations of position descriptors and a frame-by-frame 

video slider. As the user move the slider, the displayed video frame updates, 

allowing for precise examination of specific moments. 

The five horizontal behavior bars correspond to the distinct behavioral 

categories we are measuring and are color-coded using a heatmap gradient, 

where color intensity represents the intensity of each behavior, with red 

indicating high activity and blue indicating low. 

1. Locomotion: represents when the animal move and the intensity of its 

movement is color coded from blue to white to red. Its calculated by the 

difference in pixel area of the head and trunk masks combined in between 

two consecutive frames. 

2. Locomotion Threshold: A binary classification representing whether the 

rat is moving a significant amount or just subtle movements. We can 

use this metric to help determine if the rat is performing grooming or 

freezing actions. 

3. Freezing: A few set of hand coded heuristics are used to characterize 

freezing. If the rat has a low locomotion score and its movement is 

bellow the locomotion threshold for more than five seconds its considered 

freezing behavior. 

4. Rearing: heatmap calculated directly from the output of the classification 

model 

5. Grooming: Also coded as heuristics the grooming behavior is measured 

by the amount of localized movement while there is no freezing, rearing 

or locomotion. 

There are two graphs containing the position heatmap and the trajectory the 

rat moved during the test. The trajectory is drawn by interpolating the position 

of the animal every frame. 
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Figure 4.6: GUI capture. 



 

5 

Conclusion and future work 

 

 

 

 
The automatization of rat tracking and behavior analysis represents a 

significant advancement in the field of neuroscience and behavioral research. 

In this work, by leveraging modern computer vision techniques and machine 

learning algorithms, we present an automated system that offers improved 

accuracy, efficiency, and objectivity over traditional manual methods, allowing 

for consistent, high-throughput data collection and analysis. 

A key component in this advancement is the use of image segmenta- 

tion that allows precise detection and isolation of rats from complex back- 

grounds, ensuring more reliable tracking and behavioral categorization. The 

U-Net based model, with its strong ability to capture fine details and spa- 

tial hierarchies, significantly enhances the accuracy of segmentation, even in 

challenging environments. This leads to more accurate identification of spe- 

cific behaviors, such as grooming, rearing and freezing which are essential for 

behavioral analysis. 

This technology accelerates research while opening new opportunities for 

studying a wider range of behaviors and conditions, ultimately contributing 

to a better understanding of neurological diseases, cognitive functions, and 

the effects of interventions. As this system continues to evolve, we believe the 

potential for scalability and application in diverse experimental environments 

can further enhance behavioral research. 
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